
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 1 Instructor: Daniel Llamocca

Laboratory 5
(Due date: Nov. 2nd)

OBJECTIVES
▪ Compile and execute C++ code using the TBB library in Ubuntu 12.04.4 using the Terasic DE2i-150 Development Kit.

▪ Execute parallel applications using TBB: parallel_for and parallel_reduce

▪ Implement a Neural Network Layer with TBB.

REFERENCE MATERIAL

▪ Refer to the board website or the Tutorial: Embedded Intel for User Manuals and Guides .

▪ Refer to the Tutorial: High-Performance Embedded Programming with the Intel® AtomTM platform → Tutorial 6 for associated

examples.

ACTIVITIES

FIRST ACTIVITY: NEURAL NETWORK LAYER IMPLEMENTATION IN C++ WITH TBB (100/100)
▪ A sequential implementation of a Neural Network Layer was developed in Laboratory 2. In this activity, you are asked to

parallelize the computation of the Neural Network Layer using parallel_for and parallel_reduce.

✓ Though you are welcome to embed the parallel implementation of the neural network layer computation inside the

functor you created in Laboratory 2, you are not required to do so.

✓ For s implicity’s sake, you can just read the input data and compute the output data with no need to specify a functor for

the Neural Network Layer. You do need to create a functor for the specification of the operation of parallel_reduce.

NEURAL NETWORK

▪ A 3-layer neural network (also called a Fully Connected Layer) is depicted in Fig. 1(a). The input layer represents the input
values to the network. Fig. 1(b) depicts the inputs and output of the first neuron (index ‘1’) in layer 3.

▪ Fig. 1(c) depicts an artificial neuron model. The neuron output (action potential 𝑎𝑗
𝑙) results from applying an activation

function to the membrane potential (𝑧𝑗
𝑙). The indices correspond to the first neuron (index ‘1’) in layer 𝑙.

▪ The membrane potential 𝑧𝑗
𝑙 is a dot product between the inputs and the associated weights, to which a bias is then added.

𝑧𝑗
𝑙 = ∑𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1

𝑘

+ 𝑏𝑗
𝑙 , 𝑙 > 1

▪ The action potential intensity of a neuron is denoted by 𝑎𝑗
𝑙 , and it is modeled as a scalar function (activation function) of 𝑧𝑗

𝑙:

𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙) = 𝜎(∑𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1

𝑘

+ 𝑏𝑗
𝑙), 𝑙 > 1

✓ Common activation functions include:

 Rectified Linear Unit (ReLU): 𝜎(𝑧𝑗
𝑙) = max(0, 𝑧𝑗

𝑙)

 Hyperbolic Tangent: 𝜎(𝑧𝑗
𝑙) = tanh(𝑧𝑗

𝑙)

 Sigmoid function:𝜎(𝑧𝑗
𝑙) = 1

(1 + 𝑒−𝑧𝑗
𝑙
)⁄

Figure 1. (a) 3-layer neural network. (b) First neuron (index ‘1’) in layer l=3. (c) Artificial neuron model. The membrane potential is a

sum of products (input activations by weights) to which a bias term is added. The neuron is the first neuron (index ‘1’) in layer l.

The input activations come from a previous layer (l-1).

𝑙 = 1 𝑙 = 𝑙 =

class 1

class 2

class 3

𝑤11

𝑤1

𝑤1

𝑤1

𝑤1

𝑎1
 𝑎

𝑎

𝑎

𝑎

𝑎1

𝑏1

input

hidden

lay er

output

lay er

(a) (b)

S

𝑤11
𝑙

𝑤1
𝑙

𝑤1
𝑙

𝑤1
𝑙

𝑎1
𝑙

𝑎
𝑙−1

𝑎
𝑙−1

𝑎
𝑙−1

𝑎1
𝑙−1

𝑏1
𝑙

...

𝑧1
𝑙

𝜎 𝑧1
𝑙

membrane
potential

action
potential

(c)

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=11&No=529
http://www.secs.oakland.edu/~llamocca/emb_intel.html
http://www.secs.oakland.edu/~llamocca/emb_intel.html

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 2 Instructor: Daniel Llamocca

▪ The output of a layer l can be described using a vectorized notation:

𝑎𝑙 = 𝜎(𝑧𝑙), 𝑧𝑙 = 𝑤 𝑙𝑎𝑙−1 + 𝑏𝑙 , 𝑙 > 1

where: 𝑤 𝑙 : weight matrix (NO rows by NI columns) of the layer 𝑙,

𝑎𝑙−1: action potential vector (NI rows) of the previous layer 𝑙-1.

𝑏𝑙 : bias vector (NO rows) of the layer 𝑙.

𝑧𝑙: membrane potential vector (NO rows) of the layer 𝑙.

𝑎𝑙 : action potential vector (NO rows) of the layer 𝑙.

✓ Fig. 2 depicts the matrix operation for 𝑧𝑙 . NO: # of neurons in layer l. NI: # of inputs for each neuron in layer l.

INSTRUCTIONS
▪ Write a C++ program (use double type for computations) that implements a neural network (NN) layer with TBB:

✓ Neural network Layer:
 Parameters: NI, NO. You can hard-code them in main().

 Input data: 𝑤 𝑙 , 𝑎𝑙−1, 𝑏𝑙 , 𝜎 (activation function). Declare them in main() and then feed them to the NN layer.

 Output data: 𝑧𝑙 and 𝑎𝑙 . Your code should print these values.

✓ Fig. 3 depicts an example of an operation for NI=5, NO=4, Activation Function: ReLU.

✓ Strategy for parallelization with TBB:
 The following snippet computes 𝑧𝑙 and 𝑎𝑙 in a sequential fashion:

for (i = 0; i < NO; i++) {

 // Dot Product:

 z[i] = 0;

 for (j = 0; j < NI; j++) z[i] = z[i] + w[i][j]*a_i[j];

 z[i] = z[i] + b[i]; // membrane potential

 a_o[i] = act_fun(z[i],af); } // activation function (defined elsewhere)

 Here, a_i represents 𝑎𝑙−1 , w is 𝑤 𝑙 , b is 𝑏𝑙 , and af is the activation function 𝜎 (entered as an integer). Also, z

represents 𝑧𝑙 and a_o represents 𝑎𝑙 .

 Use parallel_for to implement the for loop in the code snippet.

 Use parallel_reduce to implement the dot product (whose result is z[i]).

 This requires the implementation of a functor, the functor declaration, and the call to parallel_reduce that

implements the operation (dot product) in the functor. See examples in Tutorial 5.

 Recommendation: Implement the dot product as a function (otherwise you need to declare an array of functors

and initialize them via the parameterized constructor). Inside the function, you declare the functor, execute

parallel_reduce and return the result.

✓ Verification: Use the values specified in Fig. 3. Your result (𝑧𝑙 , 𝑎𝑙) should match those listed in Fig. 3.

▪ Compile the code and execute the application on the DE2i -150 Board.

✓ Example: ./my_nnlayer

▪ Take a screenshot of the software running in the Terminal. It should show the resulting values of 𝑧𝑙 and 𝑎𝑙 .

Figure 2. Matrix operation for the computation of all membrane potentials in layer l.

Figure 3. Testbed for your Neural Network Layer Implementation. NI=5, NO=4. Activation Function: ReLU.

𝑤𝑙 𝑎𝑙−1 𝑏𝑙 𝑧𝑙

 + =

𝑧𝑙 = 𝑤𝑙𝑎𝑙−1+𝑏𝑙

NO

NI

0.25 0.5 -3.2 -4.5 -2.0

2.0 3.25 5.75 6.25 7.15

0.25 -3.5 0.25 0.25 0.25

2.0 3.25 0.75 -6.5 1.5

2.5

3.0

2.5

1.5

1.0

2.0

1.5

2.5

3.5

-12.625

47.150

-6.125

11.875

 + = 𝜎

𝑤𝑙 𝑎𝑙−1 𝑏𝑙 𝑧𝑙 𝑎𝑙𝑧𝑙

-12.625

47.150

-6.125

11.875

0.000

47.150

0.000

11.875

=

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT, OAKLAND UNIVERSITY
ECE-4900/5900: Special Topics – High-Performance Embedded Programming Fall 2020

 3 Instructor: Daniel Llamocca

SUBMISSION
▪ Demonstration: In this Lab 5, the requested screenshot of the software routine running in the Terminal suffices.

✓ If you prefer, you can request a virtual session (Webex) with the instructor and demo it (using a camera).

▪ Submit to Moodle (an assignment will be created):
✓ One .zip file:

 1st Activity: The .zip file must contain the source files (.cpp, .h, Makefile) and the requested screenshot.

TA signature: __________________________________ Date: ______________________________

	Objectives
	Reference Material
	Activities
	First Activity: Neural Network Layer Implementation in C++ with TBB (100/100)

	Submission

